

## **LINE VOLTAGE STABILIZER** FOR VOLTAGE BAND CONTROL ACCORDING TO DIN EN 50160



# **NEW CHALLENGES** IN THE LOW-VOLTAGE GRID

Highly volatile power feeds from photovoltaic units take the classical approaches to voltage band control to their limits. The ongoing expansion of the charging infrastructure for e-mobility connects further high-load consumers to the grid, imposing further challenges for voltage band control.

To maintain line voltage within the range defined by DIN EN 50160, active voltage stabilization is required. EBG provides a solution especially for long grid branches and distant consumers.







#### Function of the Voltage Stabilizer

- » the Voltage Stabilizer operates completely autonomously. Voltage stabilization need is detected by evaluation of the line voltage and the required voltage step is activated.
- » no external sensors required
- voltage correction is effected by a line transformer combined with an innovative voltage stepping circuitry



### Features

- » completely housed and wired for quick and easy installation
- » device is supplied fully parameterized, no on-site adjustment work required
- » robust technology, maintenance-free
- » voltage step-up and step-down within one device
- » suitable for all earthing schemes (TN-C, TN-C-S, TN-S, TT)
- » variant for three-wire-grid configurations available
- » compact-sized to fit into standard distribution cabinets
- » suitable also for temporary use cases

#### **Conclusion:**

- » cost-effective voltage band stabilization
- » helps to avoid costly line reinforcements

### Data Sheet



| Туре                                  | SR3                                                                |         | SR3X2                    |          | SR13                                         |
|---------------------------------------|--------------------------------------------------------------------|---------|--------------------------|----------|----------------------------------------------|
| Implementation example                | M001974                                                            | M003432 | MV011910                 | MV012323 | MV008900                                     |
| Throughput capacity ${\rm S_{_N}}$    | 104 kVA                                                            | 62 kVA  | 138 kVA                  | 77 kVA   | 272 kVA                                      |
| Phase current $I_{\rm N}$             | 151 A                                                              | 90 A    | 200 A                    | 112 A    | 394 A                                        |
| Voltage swing $\Delta U$              | ± 2,6 %                                                            | ±4,3 %  | ± 3,9 %                  | ±7%      | ± 4,3 %                                      |
| Number of steps                       | 3                                                                  |         | 5                        |          | 3                                            |
| Longitudinal impedance Z <sub>L</sub> | < 5 mΩ                                                             |         | < 5 mΩ                   |          | < 5 mΩ                                       |
| Efficiency                            | > 99,8 %                                                           |         | > 99,8 %                 |          | > 99,8 %                                     |
| Measures (WHD in mm)                  | 245 x 820 x 200 (Module)                                           |         | 480 x 820 x 200 (Module) |          | 1570 x 830 x 330<br>(Cabinet 2 x UCH size 1) |
| Line fusing (max.)                    | 355 A gG                                                           |         | 355 A gG                 |          | 400 A gG                                     |
| Overvoltage resistence                | CAT IV (6 kV at 1,2/50 μs peak)                                    |         |                          |          |                                              |
| Displays                              | LED controls for on/off status, switch position, temperature alarm |         |                          |          |                                              |
| Settable parameters                   | Stepping threshold voltages, hysteresis, switching delays          |         |                          |          |                                              |



Options shown only represent a small selection – for more info, please contact us!

## EBGelectro